
Technology Article

Achieving Higher Performance
in a Multicore-based Packet
Processing Engine Design

By Mike Coward,
VP of Strategy
& Innovation

A new class of processor has begun to appear in a variety of storage, security,
wireless base stations, and networking applications to replace the very expensive
- with long lead times to boot - proprietary Application Specific Integrated Circuits
(ASICs) developed by OEM system solution providers as well as those designed by
industry giants, such as LSI Logic and IBM.

This class of multi-core processor is made up of eight, sixteen, even sixty-four
individual processor cores with integrated memory controllers, various I/O
interfaces, and separate acceleration engines.

Though this class of processor has made great strides in overcoming the
limitations of earlier generation processors, not all multi-core processors are
created equal. Some companies that develop these processors add threading
capability to overcome memory latency, and also include native 10Gbps interfaces,
while others include security engines and even regular expression engines that
support very special applications.

Rather than examining all the features across a number of multi-core processors and
comparing them bit by bit, this paper will focus on one critical architectural element, the
memory subsystem. The memory subsystem is critical because this is a major factor in
determining the scalability and upper limits of performance that a processor can achieve.

2Multicore-based Packet Processing Engine Design

The memory architectures compared here are
based on two leading multi-core processors in
the market today:

• Single channel, wide cache line
(Single / Wide)

• Dual channel, narrow cache line
(Dual / Narrow)

The question to be addressed is: Which
architecture is superior in providing the
performance necessary to keep up with the
ever growing voice, video, and data traffic that
the market is requiring today?

Single Channel, Wide Cache
Line (Single / Wide)
The single channel, wide cache line approach
uses a single memory channel as the interface
between the processor and DDR2 memory.
The width of the channel is 128-bits and
uses 16-bits of ECC for a total of 144-bits.
In this “Single / Wide” approach, cache lines
of 128-bytes are used and every access to
memory is a burst-of-8 reads or writes.

The result of this approach is that every burst
to memory fills or empties a single cache
line. With support for DDR2-800 memory,
the Single / Wide approach has a memory
bandwidth of 12.8GBps, and is achieved
by supporting a potential of 100 million
transactions per second, where a transaction
is either a read or a write of a 128-byte cache
line.

Dual Channel, Narrow Cache
Line (Dual / Narrow)
The dual channel, narrow cache line
architecture uses a different approach for
maximizing memory performance. The “Dual
/ Narrow” architecture utilizes two memory
channels as the interface between the
processor and DDR2 memory where each
channel is 64-bits wide with 8-bits of ECC.

The cache lines in this architecture are
32-bytes and every access to memory is a
burst-of-4 reads or writes. This architecture
similarly fills or empties an entire cache line
with a single transaction. The Dual / Narrow
architecture achieves the same 12.8GBps raw
memory bandwidth, but reaches this figure
through 400 million possible transactions per
second.

From a theoretical perspective, at DDR2-
667 speeds, the Single / Wide memory
interface performance is 83 million cache
line operations per second, while the Dual
/ Narrow approach is 334 million cache line
operations per second. However, DDR2
memory is far from ideal and has a number
of factors that reduce the theoretical
performance, including:

• Refresh times

• Bus turnaround times

• Bank access time limitations

Simulations were developed to compare
the two architectural approaches. For
a typical configuration of 4GB of DDR2-
667 memory and a packet classification
workload as described below, the Single /
Wide architecture yields 64 million cache
line operations per second, while the Dual /
Narrow architecture yields 204 million cache
line operations per second.

It is important to note that although the
Single / Wide architecture has an efficiency
of 77%, [64MOps actual / 83MOps potential],
compared to 61% efficiency [204MOps actual
/ 334MOps potential], the Dual / Narrow
architecture provides more than three times
the number of transactions per second. As
discussed below, this plays a significant role
in packet throughput in real applications.

A Common Application -
Load Balancing / Packet
Distribution
AdvancedTCA (ATCA) packet processor blades
are often called upon to act as a front-end
for an entire chassis of blades. In these
applications, the packet processor connects
to the network on one side and to a set of
application blades on the other side.

Furthermore, the packet processor blade
acts as load balancer and allows the entire
collection of application blades to appear as a
single IP address, critical to hide the internal
complexities of the system from the network.

To gain an understanding for the challenge a
solution must undertake to perform 10Gbps
of load balancing and network address
translation (NAT), consider a system specified
to run at 10Gbps with minimum sized 64-
byte packets, which is 16.4 million packets
per second, in each direction, or 32.9 million
packets per second through the packet
processor.

An optimized load balancer / NAT engine will
execute the following steps for each packet:

• Receive packet and place into cache
memory

• Perform a flow lookup

• Modify the packet header per the flow

• Increment statistics about the packet / flow

• Send the packet from cache to the next
process

Note that this represents the best case - the
packet is never stored to DRAM - only to
cache memory, so the number of memory
accesses is kept to a minimum.

3Multicore-based Packet Processing Engine Design

Flow Lookup Algorithms
As packets are received into the system,
they must be categorized as to whether
or not they match an existing flow or are
part of a new flow. This is normally done
using a 5-tuple match, where the five fields
that define the flow are matched against a
database of existing flows:

• Source IP Address

• Source Port

• Destination IP Address

• Destination Port

• Protocol

The most common lookup function to check
a database of existing flows is a hash lookup.
Hash lookup is where a key is created based
on the 5-tuples and then indexed into a list
of matching keys.

The keys point to records that define each
flow and records may be chained together
in case multiple 5-tuples hash to the same
value. Each lookup requires a minimum of
two memory lookups, one to search the list
of keys and a second to retrieve the flow
record. If multiple flows hash to the same
key, additional memory accesses will be
required to follow the list of chained records.

In order to minimize the number of collisions,
the number of hash buckets is normally
chosen to be at least 2x larger than the
number of expected flows, and even with
2x buckets, 2.24 memory accesses will be
required on average. With 10x more buckets
than flows, this drops to 2.05 memory
accesses per packet.

Statistics. Once the flow has been located,
statistics about the flow must be updated. In
the highest performing NAT engines, these
statistics are stored in the same cache line as
the flow record, meaning that the statistics
are already in memory once the flow has been
located. Once the statistics are incremented,
the cache line must be written back to main
memory, requiring one further memory access.

Cache Performance. These flow lookups and
statistics update operations make the cache
memory perform poorly because the number
of packet flows tends to be much larger than
the number of cache lines, meaning that a
given flow is unlikely to be in main cache at
any given time.

Example: Assume 500K flows, with 4M hash
buckets. If each hash bucket is an 8-byte
pointer, and each flow record is 32-bytes,
then the hash table is 32MB (4M * 8-bytes),
and the flow table is 16MB (500K * 32 bytes).
With a 2MB cache, the chance that a given
flow will already be in cache is only 4%
(2 / 48). With the 3.05 memory accesses
required per packet, the cache only has a
small impact and drops the average memory
accesses per packet to 2.93.

Required Memory Performance
A highly optimized load-balancing engine
/ NAT engine can be created requiring on
average 2.93 memory accesses per packet.
Given the memory throughput for the Single
/ Wide and Dual / Narrow architectures
discussed previously, the maximum packet
rate and throughput for the two architectures
can be calculated as shown in Table 1 below.

This table highlights the impact of the
memory architecture differences between the
Single / Wide and Dual / Narrow approaches.
The Single / Wide approach is only at 66%
of line rate with DDR2-667 and cannot reach
10G full-duplex even with DDR2-800 memory.

On the other hand, the Dual / Narrow
architecture easily reaches 10G even with
the slowest DDR2-400 memory, and with
standard DDR2-667 memory the architecture
delivers more than twice the memory
performance required for full duplex 10GbE;
thus, providing significant headroom for
additional lookups and advanced functions.

Table 1. Comparison of memory architectures

4Multicore-based Packet Processing Engine Design

Corporate Headquarters
5435 NE Dawson Creek Drive

Hillsboro, OR 97124 USA
503-615-1100 | Fax 503-615-1121

Toll-Free 800-950-0044
www.radisys.com | info@radisys.com

©2011 Radisys Corporation.
Radisys is a registered trademark of Radisys Corporation.

*All other trademarks are the properties of their respective owners.
February 2010

The reason for the large difference between
the two architectures can be found in the
cache line differences. The Single / Wide
approach is designed with unusually large
128-byte cache lines, but typical network
and packet processing applications require
only 8- and 32-byte lookups.

As a result, most of each cache line is wasted.
The Dual / Narrow architecture, on the other
hand, has a cache line size of 32-bytes which
more closely matches what is required
in typical network and packet processing
applications and results in higher performance.

Memory Access Budget. A second way to look
at the problem is to calculate the number of
DDR memory accesses allowed per packet at
10G full-duplex. With 32.9 million packets per
second, the Single / Wide architecture allows
1.9 DDR memory accesses per packet, while
the Dual / Narrow architecture permits 6 DDR
memory access per packet. Again, the Dual
/ Narrow architecture provides much higher
performance.

Summary

When evaluated against a simple load
balancing / NAT application, even when
highly optimized to require less than 3
memory accesses per packet, the Single
/ Wide approach cannot deliver 10Gb line
rate full duplex performance, while the Dual
/ Narrow architecture provides twice the
necessary lookup bandwidth.

Most packet processing applications are
considerably more complex than this simple
load balancer / NAT application and do
require more lookups and statistics updates.

In addition, this analysis did not include any
overhead for slow-path processing, fast-path
management, or security processing, which
suggests that the true performance of the
Single / Wide approach will be even lower
than analyzed here. Ultimately, the Dual /
Narrow architecture is required to achieve
10Gbps line rates and above in network and
packet processing applications.

