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A new class of processor has begun to appear in a variety of storage, security, 
wireless base stations, and networking applications to replace the very expensive 
- with long lead times to boot - proprietary Application Specific Integrated Circuits 
(ASICs) developed by OEM system solution providers as well as those designed by 
industry giants, such as LSI Logic and IBM. 

This class of multi-core processor is made up of eight, sixteen, even sixty-four 
individual processor cores with integrated memory controllers, various I/O 
interfaces, and separate acceleration engines. 

Though this class of processor has made great strides in overcoming the 
limitations of earlier generation processors, not all multi-core processors are 
created equal. Some companies that develop these processors add threading 
capability to overcome memory latency, and also include native 10Gbps interfaces, 
while others include security engines and even regular expression engines that 
support very special applications. 

Rather than examining all the features across a number of multi-core processors and 
comparing them bit by bit, this paper will focus on one critical architectural element, the 
memory subsystem. The memory subsystem is critical because this is a major factor in 
determining the scalability and upper limits of performance that a processor can achieve. 
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The memory architectures compared here are 
based on two leading multi-core processors in 
the market today: 

• Single channel, wide cache line  
(Single / Wide)

• Dual channel, narrow cache line  
(Dual / Narrow) 

The question to be addressed is: Which 
architecture is superior in providing the 
performance necessary to keep up with the 
ever growing voice, video, and data traffic that 
the market is requiring today? 

Single Channel, Wide Cache 
Line (Single / Wide)
The single channel, wide cache line approach 
uses a single memory channel as the interface 
between the processor and DDR2 memory. 
The width of the channel is 128-bits and 
uses 16-bits of ECC for a total of 144-bits. 
In this “Single / Wide” approach, cache lines 
of 128-bytes are used and every access to 
memory is a burst-of-8 reads or writes.

The result of this approach is that every burst 
to memory fills or empties a single cache 
line. With support for DDR2-800 memory, 
the Single / Wide approach has a memory 
bandwidth of 12.8GBps, and is achieved 
by supporting a potential of 100 million 
transactions per second, where a transaction 
is either a read or a write of a 128-byte cache 
line.

Dual Channel, Narrow Cache 
Line (Dual / Narrow) 
The dual channel, narrow cache line 
architecture uses a different approach for 
maximizing memory performance. The “Dual 
/ Narrow” architecture utilizes two memory 
channels as the interface between the 
processor and DDR2 memory where each 
channel is 64-bits wide with 8-bits of ECC. 

The cache lines in this architecture are 
32-bytes and every access to memory is a 
burst-of-4 reads or writes. This architecture 
similarly fills or empties an entire cache line 
with a single transaction. The Dual / Narrow 
architecture achieves the same 12.8GBps raw 
memory bandwidth, but reaches this figure 
through 400 million possible transactions per 
second. 

From a theoretical perspective, at DDR2-
667 speeds, the Single / Wide memory 
interface performance is 83 million cache 
line operations per second, while the Dual 
/ Narrow approach is 334 million cache line 
operations per second. However, DDR2 
memory is far from ideal and has a number 
of factors that reduce the theoretical 
performance, including: 

• Refresh times

• Bus turnaround times

• Bank access time limitations 

Simulations were developed to compare 
the two architectural approaches. For 
a typical configuration of 4GB of DDR2-
667 memory and a packet classification 
workload as described below, the Single / 
Wide architecture yields 64 million cache 
line operations per second, while the Dual / 
Narrow architecture yields 204 million cache 
line operations per second. 

It is important to note that although the 
Single / Wide architecture has an efficiency 
of 77%, [64MOps actual / 83MOps potential], 
compared to 61% efficiency [204MOps actual 
/ 334MOps potential], the Dual / Narrow 
architecture provides more than three times 
the number of transactions per second. As 
discussed below, this plays a significant role 
in packet throughput in real applications. 

A Common Application - 
Load Balancing / Packet 
Distribution
AdvancedTCA (ATCA) packet processor blades 
are often called upon to act as a front-end 
for an entire chassis of blades. In these 
applications, the packet processor connects 
to the network on one side and to a set of 
application blades on the other side. 

Furthermore, the packet processor blade 
acts as load balancer and allows the entire 
collection of application blades to appear as a 
single IP address, critical to hide the internal 
complexities of the system from the network. 

To gain an understanding for the challenge a 
solution must undertake to perform 10Gbps 
of load balancing and network address 
translation (NAT), consider a system specified 
to run at 10Gbps with minimum sized 64-
byte packets, which is 16.4 million packets 
per second, in each direction, or 32.9 million 
packets per second through the packet 
processor. 

An optimized load balancer / NAT engine will 
execute the following steps for each packet: 

• Receive packet and place into cache 
memory

• Perform a flow lookup

• Modify the packet header per the flow

• Increment statistics about the packet / flow

• Send the packet from cache to the next 
process 

Note that this represents the best case - the 
packet is never stored to DRAM - only to 
cache memory, so the number of memory 
accesses is kept to a minimum.
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Flow Lookup Algorithms 
As packets are received into the system, 
they must be categorized as to whether 
or not they match an existing flow or are 
part of a new flow. This is normally done 
using a 5-tuple match, where the five fields 
that define the flow are matched against a 
database of existing flows: 

• Source IP Address 

• Source Port 

• Destination IP Address 

• Destination Port 

• Protocol 

The most common lookup function to check 
a database of existing flows is a hash lookup. 
Hash lookup is where a key is created based 
on the 5-tuples and then indexed into a list 
of matching keys. 

The keys point to records that define each 
flow and records may be chained together 
in case multiple 5-tuples hash to the same 
value. Each lookup requires a minimum of 
two memory lookups, one to search the list 
of keys and a second to retrieve the flow 
record. If multiple flows hash to the same 
key, additional memory accesses will be 
required to follow the list of chained records. 

In order to minimize the number of collisions, 
the number of hash buckets is normally 
chosen to be at least 2x larger than the 
number of expected flows, and even with 
2x buckets, 2.24 memory accesses will be 
required on average. With 10x more buckets 
than flows, this drops to 2.05 memory 
accesses per packet. 

Statistics. Once the flow has been located, 
statistics about the flow must be updated. In 
the highest performing NAT engines, these 
statistics are stored in the same cache line as 
the flow record, meaning that the statistics 
are already in memory once the flow has been 
located. Once the statistics are incremented, 
the cache line must be written back to main 
memory, requiring one further memory access. 

Cache Performance. These flow lookups and 
statistics update operations make the cache 
memory perform poorly because the number 
of packet flows tends to be much larger than 
the number of cache lines, meaning that a 
given flow is unlikely to be in main cache at 
any given time. 

Example: Assume 500K flows, with 4M hash 
buckets. If each hash bucket is an 8-byte 
pointer, and each flow record is 32-bytes, 
then the hash table is 32MB (4M * 8-bytes), 
and the flow table is 16MB (500K * 32 bytes). 
With a 2MB cache, the chance that a given 
flow will already be in cache is only 4% 
(2 / 48). With the 3.05 memory accesses 
required per packet, the cache only has a 
small impact and drops the average memory 
accesses per packet to 2.93.

Required Memory Performance
A highly optimized load-balancing engine 
/ NAT engine can be created requiring on 
average 2.93 memory accesses per packet. 
Given the memory throughput for the Single 
/ Wide and Dual / Narrow architectures 
discussed previously, the maximum packet 
rate and throughput for the two architectures 
can be calculated as shown in Table 1 below. 

This table highlights the impact of the 
memory architecture differences between the 
Single / Wide and Dual / Narrow approaches. 
The Single / Wide approach is only at 66% 
of line rate with DDR2-667 and cannot reach 
10G full-duplex even with DDR2-800 memory. 

On the other hand, the Dual / Narrow 
architecture easily reaches 10G even with 
the slowest DDR2-400 memory, and with 
standard DDR2-667 memory the architecture 
delivers more than twice the memory 
performance required for full duplex 10GbE; 
thus, providing significant headroom for 
additional lookups and advanced functions.

 

Table 1.  Comparison of memory architectures
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The reason for the large difference between 
the two architectures can be found in the 
cache line differences. The Single / Wide 
approach is designed with unusually large 
128-byte cache lines, but typical network 
and packet processing applications require 
only 8- and 32-byte lookups. 

As a result, most of each cache line is wasted. 
The Dual / Narrow architecture, on the other 
hand, has a cache line size of 32-bytes which 
more closely matches what is required 
in typical network and packet processing 
applications and results in higher performance. 

Memory Access Budget. A second way to look 
at the problem is to calculate the number of 
DDR memory accesses allowed per packet at 
10G full-duplex. With 32.9 million packets per 
second, the Single / Wide architecture allows 
1.9 DDR memory accesses per packet, while 
the Dual / Narrow architecture permits 6 DDR 
memory access per packet. Again, the Dual 
/ Narrow architecture provides much higher 
performance.

Summary

When evaluated against a simple load 
balancing / NAT application, even when 
highly optimized to require less than 3 
memory accesses per packet, the Single 
/ Wide approach cannot deliver 10Gb line 
rate full duplex performance, while the Dual 
/ Narrow architecture provides twice the 
necessary lookup bandwidth. 

Most packet processing applications are 
considerably more complex than this simple 
load balancer / NAT application and do 
require more lookups and statistics updates. 

In addition, this analysis did not include any 
overhead for slow-path processing, fast-path 
management, or security processing, which 
suggests that the true performance of the 
Single / Wide approach will be even lower 
than analyzed here. Ultimately, the Dual / 
Narrow architecture is required to achieve 
10Gbps line rates and above in network and 
packet processing applications. 


